1. National Research Council, Arsenic in Drinking Water-2001 Update, 2001, National Academy Press, Washington, D.C..
2. X. Y. Xu, S. P. McGrath, A. A. Meharg, and F. J. Zhao, “Growing rice aerobically markedly decreases arsenic accumulation”,
Environmental Science and Technology,
2008, 42, 5574-5579.
3. Codex Alimentarius Commission (CAC), Report on thirty-seventh session of Codex Alimentarius Commission, 2014.
4. Codex Alimentarius Commission (CAC), Report on thirty-ninth session of Codex Alimentarius Commission, 2016.
5. Ministry of Food and Drug Safety (MFDS), Korean Food Standards Codex, 2016.
6. Codex Alimentarius Commission (CAC), Report on fortieth session of Codex Alimentarius Commission, 2017.
7. U. S. Food and Drug Administration, FDA Looks for Answers on Arsenic in Rice, FDA Consumer Health Information, 1-2. 2012.
8. P. Sharma, M. Rolle, B. Kocar, S. Fendorf, and A. Kappler, “Influence of natural organic matter on arsenic transport and retention”,
Environmental Science and Technology,
2011, 45, 546-553.
9. P. N. Williams, H. Zhang, W. Davison, A. A. Meharg, M. H. Sumon, G. J. Norton, H. Brammer, and M. R. Islam, “Organic matter- solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils”,
Environmental Science and Technology,
2011, 45, 6080-6087.
10. S. Paikaray, S. Banerjee, and S. Mukherji, “Sorption of arsenic onto Vindhyan shales: Role of pyrite and organic carbon”, Current Science, 2005, 1580-1585.
11. P. K. Sahoo, and K. Kim, “A review of the arsenic concentration in paddy rice from the perspective of geoscience”,
Geosciences Journal,
2013, 17 (1), 107-122.
12. G. J. Norton, E. E. Adomako, C. M. Deacon, A. M. Carey, A. H. Price, and A. A. Meharg, “Effect of organic matter amendment, arsenic amendment and water management regime on rice grain arsenic species”,
Environmental Pollution,
2013, 177, 38-47.
13. J. Rinklebe, and G. D. Laing, Factors controlling the dynamics of trace metals in frequently flooded soils. In: H.M. Selim, 2011, 245-270. editors. Dynamics and Bioavailability of Heavy Metals in the Rootzone, Taylor & Francis Group, New York.
14. H. Rupp, J. Rinklebe, S. Bolze, and R. Meissner, “A scale depended approach to study pollution control processes in wetland soils using three different techniques”,
Ecological Engineering,
2010, 36, 1439-1447.
15. H. A. L. Rowland, C. Boothman, R. Pancost, A. G. Gault, D. A. Polya, and J. R. Lloyd, “The role of indigenous microorganisms in the biodegradation of naturally occurring petroleum, the reduction of iron, and the mobilization of arsenite from West Bengal aquifer sediments”,
Journal of Environmental Quality,
2009, 38, 1598-1607.
16. A. van Geen, J. Rose, S. Thoral, J. M. Garnier, Y. Zheng, and J. Y. Bottero, “Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part II: evidence from sediment incubations”,
Geochimica et Cosmochimica Acta,
2004, 68, 3475-3486.
17. W. J. Fitz, and W. W. Wenzel, “Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation”,
Journal of Biotechnology,
2002, 99 (3), 259-278.
18. Y. Takahashi, R. Minamikawa, K. H. Hattori, K. Kurishima, N. Kihou, and K. Yuita, “Arsenic behavior in paddy elds during the cycle of flooded and non-flooded periods”,
Environmental Science & Technology,
2004, 38, 1038-1044.
19. M. Grybos, M. Davranche, G. Gruau, and P. Petitjean, “Is trace metal release in wetland soils controlled by organic matter mobility or Fe-oxyhydroxides reduction?”
Journal of Colloid and Interface Science,
2007, 314, 490-501.
20. C. F. Lin, C. H. Wu, and H. T. Lai, “Dissolved organic matter and arsenic removal with coupled chitosan/UF operation”,
Separation and Purification Technology,
2008, 60, 292-298.
21. S. M. Shaheen, J. Rinklebe, H. Rupp, and R. Meissner, “Lysimeter trials to assess the impact of different flood-dry-cycles on the dynamics of pore water concentrations of As, Cr, Mo and V in a contaminated floodplain soil”,
Geoderma,
2014, 228-229, 5-13.
22. J. Yan, H. Huang, Z. Chen, and Y. G. Zhu, “Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere”,
Environmental Science and Technology,
2014, 48, 1001-1007.
23. Rural Development Administration (RDA), Research, survey and analysis standard for agricultural science and technology, 2012.
24. National Institute of Agricultural Sciences (NIAS), Methods of soil chemical analysis, 2010.
25. Ministry of Environment (MOE), Official methods of soil analysis for polluted soils, 2010.
26. A. Suda, K. Baba, N. Yamaguchi, I. Akahane, and T. Makino, “The effects of soil amendments on arsenic concentrations in soil solutions after long-term flooded incubation”,
Soil Science and Plant Nutrition,
2015, 61 (4), 1-11.
27. A. R. M. Solaiman, A. A. Meharg, A. G. Gault, and J. M. Charnock, “Arsenic mobilization from iron oxyhydroxides is regulated by organic matter carbon to nitrogen (C:N) ratio”,
Environment International,
2009, 35 (3), 480-484.
28. F. A. Weber, A. F. Hofacker, A. Voegelin, and R. Kretzschmar, “Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil”,
Environmental Science and Technology,
2010, 44, 116-122.
29. N. Yamaguchi, T. Nakamura, D. Dong, Y. Takahashi, S. Amachi, and T. Makino, “Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution”,
Chemosphere,
2011, 83 (7), 925-932.
30. A. Signes-Pastor, F. Burló, K. Mitra, and A. A. Carbonell-Barrachina, “Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential and pH in a west Bengal (India) soil”,
Geoderma,
2007, 137, 504-510.
31. K. R. Reddy, and R. D. DeLaune, Biogeochemistry of wetlands: science and applications, 2008, CRC Press, Boca Raton.
32. Z. L. He, J. Shentu, and X. E. Yang, Manganese and selenium. In: P.S. Hooda, editors. Trace elements in soils, 2010, 481-497. John Wiley & Sons Ltd., United Kingdom.
33. A. R. Marin, P. H. Masscheleyn, and W. H. Patrick, “Soil redox/pH stability of arsenic species and its influence on arsenic uptake by rice”,
Plant and Soil,
1993, 152, 245-253.
34. M. Z. Zheng, C. Cai, Y. Hu, G. X. Sun, P. N. Williams, H. J. Cui, G. Li, F. J. Zhao, and Y. G. Zhu, “Spatial distribution of arsenic and temporal variation of its concentration in rice”,
New Phytologist,
2011, 189, 200-209.