1. L. Ahrens, and M. Bundschuh, “Fate and effects of poly‐and perfluoroalkyl substances in the aquatic environment: A review”,
Environmental toxicology and chemistry,
2014, 33 (9), 1921-1929.
2. S. Brendel, É. Fetter, C. Staude, L. Vierke, and A. Biegel-Engler, “Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH”,
Environmental Sciences Europe,
2018, 30, 1-11.
3. W. X. Liu, W. He, N. Qin, X. Z. Kong, Q. S. He, B. Yang, C. Yang, S. E. Jorgensen, and F. L. Xu, “Temporal-spatial distributions and ecological risks of perfluoroalkyl acids (PFAAs) in the surface water from the fifth-largest freshwater lake in China (Lake Chaohu)”,
Environmental pollution,
2015, 200, 24-34.
4. A. J. Lewis, X. Yun, D. E. Spooner, M. J. Kurz, E. R. McKenzie, and C. M. Sales, “Exposure pathways and bioaccumulation of per-and polyfluoroalkyl substances in freshwater aquatic ecosystems: Key considerations”,
Science of the Total Environment,
2022, 822, 153561.
5. Stockholm Convention on Persistent Organic Pollutants, "Long-chain perfluorocarboxylic acids, their salts and related compounds Draft risk management evaluation", 2023, United Nation Environment Programme
6. New Jersey Department of Environmental Protection (NJDEP), "Per- and polyfluoroalkyl substances (PFAS) research", 2023.
7. P. Guerra, M. Kim, L. Kinsman, T. Ng, M. Alaee, and S. A. Smyth, “Parameters affecting the formation of perfluoroalkyl acids during wastewater treatment”,
Journal of Hazardous Materials,
2014, 272, 148-154.
8. S. Takagi, F. Adachi, K. Miyano, Y. Koizumi, H. Tanaka, I. Watanabe, S. Tanabe, and K. Kannan, “Fate of perfluorooctanesulfonate and perfluorooctanoate in drinking water treatment processes”,
Water Research,
2011, 45 (13), 3925-3932.
9. Z. Du, S. Deng, Y. Bei, Q. Huang, B. Wang, J. Huang, and G. Yu, “Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review”,
Journal of hazardous materials,
2014, 274, 443-454.
10. C. Flores, F. Ventura, J. Martin-Alonso, and J. Caixach, “Occurrence of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in N.E. Spanish surface waters and their removal in a drinking water treatment plant that combines conventional and advanced treatments in parallel lines”,
Science of the Total environment,
2013, 461, 618-626.
11. C. Lim, H. Kim, G. Han, H. Kim, Y. Hwang, and K. Kim, “Behavior of perfluorinated compounds in advanced water treatment plant”,
Journal of Korean Society of Water and Wastewater,
2020, 34 (5), 323-334.
12. Y. G. Park, W. H. Lee, and K. Kim, “Different adsorption behavior between perfluorohexane sulfonate (PFHxS) and perfluorooctanoic acid (PFOA) on granular activated carbon in full-scale drinking water treatment plants”,
Processes,
2021, 9 (4), 571.
13. M. F. Rahman, S. Peldszus, and W. Anderson, “Behavior and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review”,
Water Research,
2014, 50, 318-340.
14. V. Ochoa-Herrera, and R. Sierra-Alvarez, “Removal of perfluorinated surfactants by sorption onto granular activated carbon, zeolite and sludge”,
Chemosphere,
2008, 72 (10), 1588-1593.
15. V. A. A. Espana, M. Mallavarapu, and R. Naidu, “Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA): A critical review with an emphasis on field testing”,
Environmental Technology & Innovation,
2015, 4, 168-181.
16. S. Deng, Q. Zhang, Y. Nie, H. Wei, B. Wang, J. Huang, G. Yu, and B. Xing, “Sorption mechanisms of perfluorinated compounds on carbon nanotubes”,
Environmental pollution,
2012, 168, 138-144.
17. T. Groffen, J. Rijinders, N. Verbrigghe, E. Verbruggen, E. Prinsen, M. Eens, and L. Bervoets, “Influence of soil physicochemical properties on the depth profiles of perfluoroalkylated acids (PFAAs) in soil along a distance gradient from a fluorochemical palnt and associations with soil microbial parameters”,
Chemosphere,
2019, 236, 124407.
18. M. Park, S. Wu, I. J. Lopez, J. Y. Chang, T. Karanfil, and S. A. Snyder, “Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: roles of hydrophobicity of PFAS and carbon characteristics”,
Water Research,
2020, 170, 115364.
19. E. Gagliano, M. Sgroi, P. P. Falciglia, F. G. A. Vagliasindi, and P. Roccaro, “Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration”,
Water Research,
2020, 171, 115381.
20. C. P. Higgins, and R. G. Luthy, “Sorption of perfluorinated surfactants on sediments”,
Environmental Science & Technology,
2006, 40 (23), 7251-7256.
21. F. Li, X. Fang, Z. Zhou, X. Liao, J. Zou, B. Yuan, and W. Sun, “Adsorption of perfluorinated acids onto soils: Kinetic, isotherms and influences of soil properties”,
Science of the Total Environment,
2019, 649, 504-514.
22. F. Xiao, X. Zhang, L. Penn, J. S. Gulliver, and M. F. Simcik, “Effects of monovalent cations on the competitive adsorption of perfluoroalkyl acids by kaolinite: experimental studies and modeling”,
Environmental Science & Technology,
2011, 45 (23), 10028-10035.
23. 최효정, 김덕현, 윤종현, 권종범, 김문수, 김현구, 신선경, and 박선화, “과불화화합물 구조적 속성에 따른 흡착 특성 연구”, 지하수토양환경, 2021, 26 (5), 20-28.
24. P. S. Pauletto, and T. J. Bandosz, “Activated carbon versus metal-organic frameworks: A review of their PFAS adsorption performance”,
Journal of Hazardous Materials,
2022, 425, 127810.
25. S. Hasani, F. D. Ardejani, and M. E. Olya, “Equilibrium and kinetic studies of azo dye (Basic Red 18) adsorption onto montmorillonite: numerical simulation and laboratory experiments”,
Korean Journal of Chemical Engineering,
2017, 34, 2265-2274.
26. X. Peng, X. Hu, D. Fu, and F. L. Lam, “Adsorption removal of acid black 1 from aqueous solution using ordered mesoporous carbon”,
Applied Surface Science,
2014, 294, 71-80.
27. 김정원, “그래핀 개질을 이용한 탄소계 흡착제 표면에서의 과불화화합물 흡착 메커니즘 규명”, 서울대학교 석사학위논문, 2024.
28. D. Chandler, “Interfaces and the driving force of hydrophobic assembly”,
Nature,
2005, 437 (7059), 640-647.
29. R. Foroutan, S. J. Peighambardoust, S. S. Hosseini, A. Akbari, and B. Ramavandi, “Hydroxyapatite biomaterial production from chicken (femur and beak) and fishbone waste through a chemical less method for Cd2+ removal from shipbuilding wastewater”,
Journal of Hazardous Materials,
2021, 413, 125428.
30. M. J. Jaycock, and G. D. Parfitt, Chemistry of interfaces, 1981.
31. M. Wawrzkiewicz, P. Bartczak, and T. Jesionowski, “Enhanced removal of hazardous dye form aqueous solutions and real textile wastewater using bifunctional chitin/lignin biosorbent”,
International journal of biological macromolecules,
2017, 99, 754-764.
32. Y. Li, D. P. Oliver, and R. S. Kookana, “A critical analysis of published data to discern the role of soil and sediment properties in determining sorption of per and polyfluoroalkyl substance (PFASs)”, Science of the Total Environment, 2018, 628-629. 110-120
33. C. Wei, X. Song, Q. Wang, and Z. Hu, “Sorption kinetics, isotherms and mechanisms of PFOS on soils with different physicochemical properties”,
Ecotoxicology and Environmental Safety,
2017, 142, 40-50.