J Environ Anal Health Toxicol > Volume 27(4); 2024 > Article |
|
Hyper parameters |
NSE |
|||||
---|---|---|---|---|---|---|
Number of neighbors | Weight function | Algorithm | Leaf size* | Distance metric | Tuning result | Test data Prediction result |
3 | Distance | Ball tree | 30, 40, 50 | Euclidean | 0.99043511 | 0.93977295 |
3 | Distance | Auto, kd | 30, 40, 50 | Euclidean | 0.99043510 | 0.93977256 |
3 | Distance | Auto, kd | 20 | Euclidean | 0.99043509 | 0.93977252 |
3 | Distance | Ball tree | 20 | Euclidean | 0.99043509 | 0.93977295 |
3 | Distance | Brute | - | Euclidean | 0.99043503 | 0.93977283 |
3 | Distance | Brute | - | Manhattan | 0.99011249 | 0.95941344 |
3 | Distance | Ball tree | 20 | Manhattan | 0.99011245 | 0.95941340 |
3 | Distance | Auto, kd | 30, 40, 50 | Manhattan | 0.99011211 | 0.95941304 |
3 | Distance | Auto, kd | 20 | Manhattan | 0.99011210 | 0.95941299 |
3 | Distance | Ball tree | 30, 40, 50 | Manhattan | 0.99011209 | 0.95941340 |
Hyper parameters |
NSE |
|||||
---|---|---|---|---|---|---|
Number of neighbors | Weight function | Algorithm | Leaf size* | Distance metric | Tuning result | Test data Prediction result |
3 | Distance | Ball tree | 20 | Euclidean | 0.90725382 | 0.81160589 |
3 | Distance | Ball tree | 30, 40, 50 | Euclidean | 0.90725382 | 0.81160589 |
3 | Distance | Brute | - | Euclidean | 0.90725382 | 0.81159847 |
3 | Distance | Auto, kd | 20 | Euclidean | 0.90725380 | 0.81160589 |
3 | Distance | Auto, kd | 30, 40, 50 | Euclidean | 0.90725379 | 0.81160590 |
5 | Distance | Auto, kd | 30, 40, 50 | Euclidean | 0.90643672 | 0.79259198 |
5 | Distance | Auto, kd | 20 | Euclidean | 0.90643672 | 0.79259194 |
5 | Distance | Ball tree | 20 | Euclidean | 0.90643660 | 0.79259338 |
5 | Distance | Ball tree | 30, 40, 50 | Euclidean | 0.90643660 | 0.79259338 |
5 | Distance | Brute | - | Euclidean | 0.90643659 | 0.79255159 |
Hyper parameters |
NSE |
|||
---|---|---|---|---|
Regularization parameter* | Kernel type | Gamma** | Tuning result | Test data Prediction result |
- | Linear | - | 0.99999419 | 0.99994634 |
100 | RBF | Scale | 0.93541655 | 0.86311621 |
75 | RBF | Scale | 0.92875436 | 0.86430967 |
50 | RBF | Scale | 0.91649068 | 0.86227337 |
40 | RBF | Scale | 0.90947460 | 0.86605998 |
30 | RBF | Scale | 0.90032091 | 0.86882386 |
25 | RBF | Scale | 0.89286681 | 0.87011582 |
20 | RBF | Scale | 0.88350305 | 0.87203033 |
15 | RBF | Scale | 0.87041528 | 0.87859503 |
10 | RBF | Scale | 0.84797009 | 0.89351061 |
Hyper parameters |
NSE |
|||
---|---|---|---|---|
Regularization parameter | Kernel type | Gamma* | Tuning result | Test data Prediction result |
1 | Linear | - | 0.99999442 | 0.99994789 |
0.75 | Linear | - | 0.99999441 | 0.99994769 |
0.25 | Linear | - | 0.99999435 | 0.99994747 |
0.5 | Linear | - | 0.99999433 | 0.99994760 |
2.5 | Linear | - | 0.99999424 | 0.99994681 |
7.5, 10, 15, 20, 25, 30, 40, 50, 75, 100 | Linear | - | 0.99999419 | 0.99994640 |
5 | Linear | - | 0.99999419 | 0.99994640 |
0.1 | Linear | - | 0.99999396 | 0.99994912 |
0.075 | Linear | - | 0.99999324 | 0.99995015 |
0.05 | Linear | - | 0.99996793 | 0.99995143 |
Category | NSE | MSE | RMSE | MAE | |
---|---|---|---|---|---|
Previous study [7] | 0.915 | - | - | - | |
K-NN | Raw data | 0.95941344 | 7.36133798 | 2.71317858 | 1.49319843 |
Normalization data | 0.81160590 | 34.16975066 | 5.84548977 | 3.25210411 | |
SVM | Raw data | 0.99994634 | 0.00973183 | 0.09865002 | 0.09863833 |
Normalization data | 0.99995143 | 0.00880874 | 0.09385491 | 0.09359360 | |
Decision tree | Raw data | 0.99999829 | 0.00031091 | 0.01763255 | 0.00467735 |
Normalization data | 0.99999846 | 0.00027859 | 0.01669088 | 0.00475128 |