1. S. Samanipour, S. Kaserzon, S. Vijayasarathy, H. Jiang, P. Choi, M. Reid, J. Mueller, and K. Thomas, “Machine learning combined with non-targeted LC-HRMS analysis for a risk warning system of chemical hazards in drinking water: A proof of concept”,
Talanta,
2019, 195, 426-432.
2. S. Huntscha, H. P. Singer, C. S. McArdell, C. E. Frank, and J. Hollender, “Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography-tandem mass spectrometry”,
Journal of Chromatography A,
2012, 1268, 74-83.
3. J. C. G. Sousa, A. R. Ribeiro, M. O. Barbosa, M. F. R. Pereira, and A. M. T. Silva, “Review on environmental monitoring of water organic pollutants identified by EU guidelines”,
Journal of hazardous material,
2018, 344, 146-162.
4. M. O. Barbosa, N. F. F. Moreira, A. R. Ribeiro, M. F. R. Pereira, and A. M. T. Silva, “Occurrence and removal of organic micropollutants: An overview of the watch list of EU Decision 2015/495”,
Water Research,
2016, 94, 257-279.
5. L. Cortes, D. Marinov, I. Sanseverino, A. Cuenca, M. Niegowska, E. Rodriguez, and T. Lettieri, “Selection of substances for the 3rd Watch List under the Water Framework Directive”, 2020.
6. T. U. Ahn, W. K. Kim, D. H. Son, I. T. Yeom, J. H. Kim, and S. J. Yu, “Study on Discharge Characteristics of Water Pollutants among Industrial Wastewater per Industrial Classification and the Probability Evaluation”,
Journal of Korean Society of Environmental Engineering,
2016, 38, 14-24.
7. Y. Choi, J. Lee, K. Kim, H. Mun, N. Park, and J. Jeon, “Identification, quantification, and prioritization of new emerging pollutants in domestic and industrial effluents, Korea: Application of LC-HRMS based suspect and non-target screening”,
Journal of hazardous material,
2021, 402, 123706.
8. J. Ra, H. Yoom, H. Son, and Y. Lee, “Occurrence and transformation of gabapentin in urban water quality engineering: Rapid formation of nitrile from amine during drinking water chlorination”,
Water Research,
2020, 184, 116123.
9. N. Park, and J. Jeon, “Emerging pharmaceuticals and industrial chemicals in Nakdong River, Korea: Identification, quantitative monitoring, and prioritization”,
Chemosphere,
2021, 263, 128014.
10. S. S. Baek, Y. Choi, J. Jeon, J. Pyo, J. Park, and K. H. Cho, “Replacing the internal standard to estimate micropollutants using deep and machine learning”,
Water Research,
2021, 188, 116535.
11. C. D. Seo, H. J. Son, J. T. Choi, D. C. Ryu, and P. J. Yoo, “Occurrence of Organophosphorus Flame Retardants (OPFRs) in Nakdong River Basin?: Mainstreams, Tributaries and STP Effluents”,
Journal of Korean Society of Environmental Engineering,
2015, 37, 396-403.
12. J. Hollender, E. L. Schymanski, H. P. Singer, and P. L. Ferguson, “Nontarget Screening with High Resolution Mass Spectrometry in the Environment: Ready to Go?”
Environmetal science and technology,
2017, 51, 11505-11512.
13. J. Schwarzbauer, and M. Ricking, “Non-target screening analysis of river water as compound-related base for monitoring measures”,
Environmental science and pollution research,
2010, 17, 934-947.
14. J. Hollender, B. Van Bavel, V. Dulio, E. Farmen, K. Furtmann, J. Koschorreck, U. Kunkel, M. Krauss, J. Munthe, M. Schlabach, J. Slobodnik, G. Stroomberg, T. Ternes, N. S. Thomaidis, A. Togola, and V. Tornero, “High resolution mass spectrometry-based non-target screening can support regulatory environmental monitoring and chemicals management”,
Environmental science europe,
2019, 31.
15. T. L. ter Laak, M. van der Aa, C. J. Houtman, P. G. Stoks, and A. P. van Wezel, “Relating environmental concentrations of pharmaceuticals to consumption: A mass balance approach for the river Rhine”,
Environmental Internation,
2010, 36, 403-409.
16. M. Ruff, M. S. Mueller, M. Loos, and H. P. Singer, “Quantitative target and systematic non-target analysis of polar organic micro-pollutants along the river Rhine using high-resolution mass-spectrometry - Identification of unknown sources and compounds”,
Water Research,
2015, 87, 145-154.
17. N. A. Munz, F. J. Burdon, D. de Zwart, M. Junghans, L. Melo, M. Reyes, U. Schönenberger, H. P. Singer, B. Spycher, J. Hollender, and C. Stamm, “Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions”,
Water Research,
2017, 110, 366-377.
18. L. L. Hohrenk, M. Vosough, and T. C. Schmidt, “Implementation of Chemometric Tools to Improve Data Mining and Prioritization in LC-HRMS for Nontarget Screening of Organic Micropollutants in Complex Water Matrixes”,
Analytical Chemistry,
2019, 91, 9213-9220.
19. L. Maurer, C. Villette, J. Zumsteg, A. Wanko, and D. Heintz, “Large scale micropollutants and lipids screening in the sludge layers and the ecosystem of a vertical flow constructed wetland”,
Science of the Total Environment,
2020, 746, 141196.
20. N. A. Alygizakis, S. Samanipour, J. Hollender, M. Ibáñez, S. Kaserzon, V. Kokkali, J. A. Van Leerdam, J. F. Mueller, M. Pijnappels, M. J. Reid, E. L. Schymanski, J. Slobodnik, N. S. Thomaidis, and K. Thomas, “Exploring the Potential of a Global Emerging Contaminant Early Warning Network through the Use of Retrospective Suspect Screening with High-Resolution Mass Spectrometry”,
Environmetal science and technology,
2018, 85, 5135-5144.
21. W. Brack, J. Hollender, M. L. Alda, C. Müller, T. Schulze, E. Schymanski, J. Slobodink, and M. Krauss, “High-resolution mass spectrometry to complement monitoring and track emerging chemicals and pollution trends in European water resources”,
Environmental science europe,
2019, 31.
22. E. L. Schymanski, H. P. Singer, P. Longrée, M. Loos, M. Ruff, M. A. Stravs, V. C. Ripollés, and J. Hollender, “Strategies to characterize polar organic contamination in wastewater: Exploring the capability of high resolution mass spectrometry”,
Environmetal science and technology,
2014, 48, 1811-1818.
23. L. Lian, S. Yan, H. Zhou, and W. Song, “Overview of the Phototransformation of Wastewater Effluents by High-Resolution Mass Spectrometry”,
Environmetal science and technology,
2020, 54, 1816-1826.
24. M. Oss, A. Kruve, K. Herodes, and I. Leito, “Electrospray ionization efficiency scale of organic compound”,
Analytical Chemistry,
2010, 82, 2865-2872.
25. S. Kern, K. Fenner, H. P. Singer, R. P. Schwarzenbach, and J. Hollender, “Identification of transformation products of organic contaminants in natural waters by computer-aided prediction and high-resolution mass spectrometry”,
Environmetal science and technology,
2009, 43, 7039-7046.
26. E. Torabi, C. Wiegert, B. Guyot, S. Vuilleumier, and G. Imfeld, “Dissipation of S-metolachlor and butachlor in agricultural soils and responses of bacterial communities: Insights from compound-specific isotope and biomolecular analyses”,
Journal of Environmental Science,
2020, 92.
27. X. Li, Y. Li, X. Zhang, X. Zhao, X. Chen, and Y. Li, “The metolachlor degradation kinetics and bacterial community evolution in the soil bioelectrochemical remediation”,
Chemosphere,
2020, 248.
28. U. Šunta, F. Prosenc, P. Trebše, T. G. Bulc, and M. B. Kralj, “Adsorption of acetamiprid, chlorantraniliprole and flubendiamide on different type of microplastics present in alluvial soil”,
Chemosphere,
2020, 261.
29. USEPA, “Flubendiamide - Notice of Intent to Cancel and Other Supporting Documents”, 2018.
30. Y. X. Zhao, H. Y. Jiang, X. Cheng, Y. X. Zhu, Z. X. Fan, Z. L. Dai, L. Guo, Z. H. Liu, and Y. J. Dai, “Neonicotinoid thiacloprid transformation by the N2-fixing bacterium Microvirga flocculans CGMCC 1.16731 and toxicity of the amide metabolite”,
International Biodeterioration and Biodegradation,
2019, 145, 104806.
31. I. S. Hwang, Y. J. Oh, H. Y. Kwon, J. H. Ro, D. B. Kim, B. C. Moon, M. S. Oh, H. H. Noh, S. W. Park, G. H. Choi, S. H. Ryu, B. S Kim, K. S. Oh, C. H. Lim, and H. S. Lee, “Monitoring of Pesticide Residues Concerned in Stream Water”,
Korean Journal of Environmental Agriculture,
2019, 38, 173-184.
32. 국립농업과학원, 농약의 환경잔류분 정의- 4, 2020.
33. T. Letzel, A. Bayer, W. Schulz, A. Heermann, T. Lucke, G. Greco, S. Grosse, W. Schüssler, M. Sengl, and M. Letzel, “LC-MS screening techniques for wastewater analysis and analytical data handling strategies: Sartans and their transformation products as an example”,
Chemosphere,
2015, 137, 198-206.
34. K. Nödler, O. Hillebrand, K. Idzik, M. Strathmann, F. Schiperski, J. Zirlewagen, and T. Licha, “Occurrence and fate of the angiotensin II receptor antagonist transformation product valsartan acid in the water cycle - A comparative study with selected β-blockers and the persistent anthropogenic wastewater indicators carbamazepine and acesulfame”,
Water Research,
2013, 47, 6650-6659.
35. P. Gago-Ferrero, A. Krettek, S. Fischer, K. Wiberg, and L. Ahrens, “Suspect Screening and Regulatory Databases: A Powerful Combination to Identify Emerging Micropollutants”,
Environmetal science and technology,
2018, 52, 6881-6894.
36. S. Wang, M. Matt, B. L. Murphy, M. G. Perkins, D. A. Matthews, S. D. Moran, and T. Zeng, “Organic micropollutants in New York lakes: A statewide citizen science occurrence study”,
Environmetal science and technology,
2020.
37. M. Gros, K. M. Blum, H. Jernstedt, G. Renman, S. Rodríguez-Mozaz, P. Haglund, P. L. Andersson, K. Wiberg, and L. Ahrens, “Screening and prioritization of micropollutants in wastewaters from on-site sewage treatment facilities”,
Journal of hazardous material,
2017, 328, 37-45.
38. N. Park, Y. Choi, D. Kim, K. Kim, and J. Junho, “Prioritization of highly exposable pharmaceuticals via a suspect/non-target screening approach?: A case study for Yeongsan River , Korea”,
Science of the Total Environment,
2018, 639, 570-579.
39. 환경부, “먹는물 수질감시항목 운영 등에 관한 고시”, 2021.
40. 환경부, “수질오염물질 지정 등에 관한 지침”, 2021.
41. M. Nian, K. Luo, F. Luo, R. Aimuzi, X. Huo, Q. Chen, Y. Tian, and J. Zhang, “Association between Prenatal Exposure to PFAS and Fetal Sex Hormones: Are the Short-Chain PFAS Safer?”
Environmetal science and technology,
2020, 54, 8291-8299.
42. P. Huang, M. Hwangbo, Z. Chen, Y. Liu, J. Kameoka, and K. Chu, “Reusable Functionalized Hydrogel Sorbents for Removing Long- and Short-Chain Perfluoroalkyl Acids (PFAAs) and GenX from Aqueous Solution”,
ACS Omega,
2018, 3, 17447-17455.