1. G. G. Ying, R. S. Kookana, and Y. J. Ru, “Occurrence and fate of hormone steroids in the environment”,
Environment International,
2002, 28, 545-551.
2. W. J. Langston, G. R. Burt, B. S. Chesman, and C. H. Vane, “Partitioning, bioavailability and effects of oestrogens and xeno-oestrogens in the aquatic environment”,
Journal of the Marine Biological Association of the United Kingdom,
2005, 85, 1-31.
3. J. Im, and F. E. Löffler, “Fate of bisphenol A in terrestrial and aquatic environments”,
Environmental Science and Technology,
2016, 50, 8403-8416.
4. J. F. M. Nouws, and J. Laurensen, “Postmortal degradation of furazolidone and furaltadone in edible tissues of calves”,
Veteicary Quarterly,
1990, 12, 56-59.
5. R. J. McCracken, W. John blanchflower, C. Rowan, M. A. McCoy, and D. Glenn Kennedy, “Determination of furazolidone in porcine tissue using thermospray liquid chromatography-mass spectrometry and a study of the pharmacokinetics and stability of its residues”,
The Analyst,
1995, 120, 2347-2351.
6. A. Leitner, P. Zöllner, and W. Lindner, “Determination of the metabolites of nitrofuran antibiotics in animal tissue by high-performance liquid chromatography-Tandem mass spectrometry”,
Journal of Chromatography A,
2001, 939, 49-58.
7. D. R. McCalla, “Mutagenicity of nitrofuran derivatives: Review”,
Environmental Mutagenesis,
1983, 5, 745-765.
8. R. Draisci, L. Giannetti, L. Lucentini, L. Palleschi, G. Brambilla, L. Serpe, and P. Gallo, “Determination of nitrofuran residues in avian eggs by liquid chromatographyUV photodiode array detection and confirmation by liquid chromatography-ion spray mass spectrometry”,
Journal of Chromatography A,
1997, 777, 201-211.
9. L. H. M. Vroomen, M. C. J. Marcel, B. Van, J. Peter, J. P. Groten, C. J. Wissink, and H. A. Kuiper, “In vivo and in vitro metabolic studies of furazolidone: A risk evaluation”,
Drug Metabolism Reviews,
1990, 22, 663-676.
10. J. E. M. van Koten-Vermeulen, M. F. A. Wouters, and F. X. R. van Leeuwen, Report of the 40th Meeting of the Joint FAO/WHO Expert Committee On Food Additives (JECFA), World Health Organisation, Geneva, 1993, 85.
11. S. P. Khong, E. Gremaud, J. Richoz, T. Delatour, P. A. Guy, R. H. Stadler, and P. Mottier, “Analysis of matrix bound nitrofuran residues in worldwide-originated honeys by isotope dilution high-performance liquid chromatography-tandem mass spectrometry”,
Journal of Agricultural and Food Chemistry,
2004, 52, 5309-5315.
12. 식품의약품안전평가원, 수산물 중 잔류동물용의약품 모니터링 연구, 2015.
13. A. Kaufmann, P. Butcher, K. Maden, S. Walker, and M. Widmer, “Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry”,
Analytica Chimica Acta,
2015, 862, 41-52.
14. L. K. Sørensen, T. H. Elbæek, and H. Hansen, “Determination of chloramphenicol in bovine milk by liquid chromatography/tandem mass spectrometry”,
Journal of AOAC International,
2003, 86, 703-706.
15. I. S. Park, and N. Kim, “Development of a chemiluminescent immunosensor for chloramphenicol”,
Analytica Chimica Acta,
2006, 578, 19-24.
16. R. J. Shakila, S. A. P. Vyla, R. S Kumar, G. Jeyasekaran, and G. I. Jasmine, “Stability of chloramphenicol residues in shrimp subjected to heat processing treatments”,
Food Microbiology,
2006, 23, 47-51.
17. K. E. Nusbaum, and E. B. Shotts, “Absorption of selected antimicrobic drugs from water by channel catfish, lctalurus punctatus”,
Canadian Journal of Fisheries and Aquatic Sciences,
1981, 38, 993-996.
18. J. P. Cravedi, G. Choubert, and G. Delous, “Digestibility of chloramphenicol, oxolinic acid and oxytetracycline in rainbow trout and influence of these antibiotics on lipid digestibility”,
Aquaculture,
1987, 60, 133-141.
19. A. Ervik, B. Thorsen, V. Eriksen, B. T. Lunestad, and O. B. Samuelsen, “Impact of administering antibacterial agents on wild fish and blue mussels Mytilus edulis in the vicinity of fish farms”,
Diseases of Aquatic Organisms,
1994, 18, 45-51.
20. K. Kümmerer, “Promoting resistance by the emission of antibiotics from hospitals and households into effluent”,
Clinical Microbiology and Infection,
2003, 9, 1203-1214.
21. R. S. Daum, D. L. Cohen, and A. L. Smith, “Fatal aplastic anemia following apparent "dose-related" chloramphenicol toxicity”,
The Journal of Pediatrics,
1979, 94, 403-s406.
22. A. Anadón, P. Bringas, M. R. Martinez-Larranaga, and M. J. Diaz, “Bioavailability, pharmacokinetics and residues of chloramphenicol in the chicken”,
Journal of veterinary Pharmacology and Therapeutics,
1994, 17, 52-58.
23. P. Mottier, V. Parisod, E. Gremaud, P. A. Guy, and R.H. Stadler, “Determination of the antibiotic chloramphenicol in meat and seafood products by liquid chromatography-electrospray ionization tandem mass spectrometry”,
Journal of Chromatography A,
2003, 994, 75-84.
24. J. Ferguson, A. Baxter, P. Young, G. Kennedy, C. Elliott, S. Weigel, R. Gatermann, H. Ashwin, S. Stead, and M. Sharman, “Detection of chloramphenicol and chloramphenicol glucuronide residues in poultry muscle, honey, prawn and milk using a surface plasmon resonance biosensor and Qflex® kit chloramphenicol”,
Analytica Chimica Acta,
2005, 529, 109-113.
25. S. Ye, Y. Y. Hu, A. Li, H. Z. Xu, J. Y. Wang, and D. Y. Ma, “Determination of chloramphenicol residues in sediment in marine environment”, Marine Environmental Science, 2008, 27, 269-271.
29. C. Ardsoongnearn, O. Boonbanlu, S. Kittijaruwattana, and L. Suntornsuk, “Liquid chromatography and ion trap mass spectrometry for simultaneous and multiclass analysis of antimicrobial residues in feed water”,
Journal of Chromatography B,
2014, 945-946. 31-38
31. L. Peng, and T. Farkas, “Analysis of basic compounds by reversed-phase liquid chromatography-electrospray mass spectrometry in high-pH mobile phases”,
Journal of Chromatography A,
2008, 1179, 131-144.
32. M. Seifrtova, L. Novakova, C. Lino, A. Pena, and P. Solich, “An overview of analytical methodologies for the determination of antibiotics in environmental waters”,
Analytica Chimica Acta,
2009, 649, 158-179.
33. K. Mitrowska, A. Posyniak, and J. Zmudzki, “Determination of malachite green and leucomalachite green residues in water using liquid chromatography with visible and fluorescence detection and confirmation by tandem mass spectrometry”,
Journal of Chromatography A,
2008, 1207, 94-100.
34. 국립수산과학원, 한국 연안 어장환경 조사 연보, 2019, 8.